SMERIGLIO Lab

Biotherapies for motor neuron disorders (ALS & SMA)

The main goal of our team is to develop new therapies for motor neuron disorders (MND). Our work is focused on spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS).

The use of viral vectors derived from adeno associated virus (AAV) opened novel perspectives and applications for the treatment of MNDs. In 2007, M. Barkats demonstrated the high potential of self-complementary AAV serotype 9 (AAV9) to efficiently transduce the central nervous system (CNS) following a systemic injection (Barkats, Patent PCT/EP2008/063297, 2007 and publication Institut de Myologie). Remarkably, the first gene therapy based on this approach – Zolgensma® – has been recently approved by the Food and Drug Administration (FDA) for the treatment of infantile forms of SMA. This represents a major breakthrough in the field of gene therapy for rare diseases.

We are currently optimizing the AAV-mediated gene replacement approach for SMA. Our objective is to develop specific vectors targeting multiple organs affected in the disease (Besse et al., 2020). This will likely reduce the potential side-effects of the current therapy on the long term. We are also investigating epigenetic regulation in SMA and motor neuron degeneration. The study of epigenetic hallmarks will provide a comprehensive understanding of the disease and in particular of its different forms. Furthermore, this work will contribute to the identification of novel pathways implicated in the pathophysiology of SMA. The objective of these projects on the long term is to identify novel therapeutic targets, specific to each SMA patient and to design future personalized medicine approaches ( Smeriglio et al., 2020).

We are also taking advantage of the therapeutic potential of AAV vectors to find treatments for ALS. In 2017, we developed a therapeutic strategy for ALS caused by mutations in the superoxide dismutase 1 (SOD1) gene. Using an exon-skipping approach through AAV, we induced global decrease in the human mutant SOD1 in the SOD1G93A mouse model (Biferi et al., 2017). This work received the Prize4Life award “THE $1M AVI KREMER ALS TREATMENT PRIZE4LIFE”. We are currently furthering the pre-clinical development of this approach in collaboration with Généthon.

A big part of our research effort focuses on the development of a therapeutic strategy for ALS and fronto-temporal dementia (FTD) caused by mutations in C9ORF72 gene. This is the most common form of ALS (40% of familial forms and 7% of sporadic cases). The mutation results in a gain-of-function and a loss of C9ORF72 protein expression (Reviewed by Cappella et al., 2019). Our strategy aims to simultaneously target all the pathological mechanisms, using AAV vectors. We are also generating novel experimental models to better understand the disease.

Equipe Biferi au complet

Contacts :

Piera Smeriglio

Maria-Grazia Biferi
Découvrez nos expertises

NamePositionEmailORCIDGroup



108 documents

  • Piera Smeriglio. Epigenetics in Spinal Muscular Atrophy. 7th International Congress of Myology, Sep 2022, Nice, France. ⟨hal-04002818⟩
  • Marie-Thérèse Daher, Marisa Cappella, Alessandra Ricupero, Chloé Nguyen Van, Anne Bigot, et al.. An in vitro model to understand the C9orf72-linked Amyotrophic Lateral Sclerosis features in skeletal muscle. 7th International Congress of Myology, Sep 2022, Nice, France. ⟨hal-04002435⟩
  • Sestina Falcone, T. Marais, M. Traoré, C. Gentil, J. Mésseant, et al.. Unraveling the role of GDF5 therapeutic potential in Amyotrophic Lateral Sclerosis. Myology 2022, Sep 2022, Nice (FRANCE), France. ⟨hal-04002164⟩
  • Chiara Noviello, Sestina Falcone, Bruno Cadot, Lucile Saillard, Béatrice Matot, et al.. Exploring the protective role of GDF5 against skeletal muscle disuse atrophy. Myology Conference 2022, Sep 2022, Nice (FRANCE), France. ⟨hal-03994516⟩
  • Ugo Carraro, Frank Bittmann, Elena Ivanova, Halldór Jónsson Jr, Helmut Kern, et al.. Post-meeting report of the 2022 On-site Padua Days on Muscle and Mobility Medicine, March 30 - April 3, 2022, Padua, Italy. European Journal of Translational Myology, 2022, 32 (2), ⟨10.4081/ejtm.2022.10521⟩. ⟨hal-03815564⟩
  • Piera Smeriglio. Epigenetic modifications in Spinal muscular atrophy. 17th International Congress on Neuromuscular Diseases, Jul 2022, Bruxelles, Belgium. ⟨hal-04002781⟩
  • Julia Pereira Lemos. The thymus in the pathogenesis/ pathophysiology of Amyotrophic Lateral Sclerosis. 17th International Congress on Neuromuscular Diseases, Jul 2022, Bruxelles, Belgium. ⟨hal-04002792⟩
  • Piera Smeriglio. Biomarkers for Spinal muscular atrophy. 17th International Congress on Neuromuscular Diseases, Jul 2022, Bruxelles, Belgium. ⟨hal-04002773⟩
  • Piera Smeriglio. RNA biomarkers for Spinal muscular atrophy. RNA metabolism in neuromuscular disease, Jun 2022, Online, France. ⟨hal-04002812⟩
  • Fiorella Grandi, Hailey Modi, Lucas Kampman, M. Ryan Corces. Chromatin accessibility profiling by ATAC-seq. Nature Protocols, 2022, 17 (6), pp.1518-1552. ⟨10.1038/s41596-022-00692-9⟩. ⟨hal-04198919⟩
AFM Telethon : innover pour guérir
Agence nationale de la recherche
Fondation Thierry Latran
Association pour la recherche sur la SLA
European Commission

You cannot copy content of this page

Share This