Signal pathways and striated muscles

Striated muscles account for about 40% of total body weight, contain 50-75% of the body’s total protein and contribute significantly to multiple body functions. There are two types of striated muscle: skeletal and cardiac muscles. They share a common architecture characterized by a very particular and well described arrangement of muscle cells and associated connective tissues.

Muscular dystrophies correspond to a family of muscle diseases characterized by weakness and progressive muscle degeneration. At the skeletal muscular level, they manifest themselves by a decrease in muscle strength (muscular dystrophy), and a lack of mobilité́ joints (muscle retractions) that begin in childhood or in young adults. The decrease in muscle strength leads, in a few cases, to a loss of independent walking, making it necessary to use a power wheelchair to get around. These are diseases of genetic origin. There are several forms that differ in the age of onset of symptoms, the nature of the muscles affected and their severity. At the cardiac level, the presence of abnormalities is observed at a more or less advanced age, mainly in the form of dilated cardiomyopathy, which is the main cause of death and makes the severity of these diseases. At present, there is no curative treatment available.

Our group is particularly interested in studying the molecular and cellular mechanisms involved in two muscular dystrophies: Duchenne muscular dystrophy and Emery-Dreifuss muscular dystrophy. It appears important and necessary to increase our knowledge of the pathophysiology of muscular dystrophies and cardiomyopathies in order to unveil the cellular/molecular mechanisms that will allow us to target future therapeutic approaches. We are studying in vitro and in vivo models of these pathologies and developing novel pharmacological therapies based on our discoveries.

Our research is based on 3 axes:

  • Tissue organization of striated muscles in health and pathology
  • Signalling pathways regulating the links between structure and function in striated muscles
  • Control of striated muscle gene expression through signalling pathways

Team Muchir
Antoine Muchir

Contacts :

Antoine Muchir


113 documents

  • Pia Bernasconi, Nicola Carboni, Giulia Ricci, Gabriele Siciliano, Luisa Politano, et al.. Elevated TGF β2 serum levels in Emery-Dreifuss Muscular Dystrophy: Implications for myocyte and tenocyte differentiation and fibrogenic processes. Nucleus, 2018, 9 (1), pp.337-349. ⟨10.1080/19491034.2018.1467722⟩. ⟨hal-02297778⟩
  • Heleen E Boers, Mohammad Haroon, Fabien Le Grand, Astrid D Bakker, Jenneke Klein-Nulend, et al.. Mechanosensitiviy of aged muscle stem cells. Journal of Orthopaedic Research, 2018, 36 (2), pp.632 - 641. ⟨10.1002/jor.23797⟩. ⟨hal-01744100⟩
  • Coline Macquart, Rene Jüttner, Blanca Morales Rodriguez, Caroline Le Dour, Florence Lefebvre, et al.. Microtubule cytoskeleton regulates Connexin 43 localization and cardiac conduction in cardiomyopathy caused by mutation in A-type lamins gene. Human Molecular Genetics, 2018, 28 (24), pp.4043-4052. ⟨10.1093/hmg/ddy227⟩. ⟨hal-02505679⟩
  • Caroline Le Dour, Coline Macquart, Fusako Sera, Shunichi Homma, Gisèle Bonne, et al.. Decreased WNT/β-catenin signalling contributes to the pathogenesis of dilated cardiomyopathy caused by mutations in the lamin a/C gene. Human Molecular Genetics, 2017, 7 (1), pp.ddw389. ⟨10.1093/hmg/ddw389⟩. ⟨hal-03855712⟩
  • Amalia Stantzou, Elija Schirwis, Sandra Swist, Sonia Alonso-Martin, Ioanna Polydorou, et al.. BMP signaling regulates satellite cell-dependent postnatal muscle growth. Development (Cambridge, England), 2017, 144 (15), pp.2737-2747. ⟨10.1242/dev.144089⟩. ⟨hal-02407976⟩
  • Floriane Lacour, Elsa Vezin, C. Florian Bentzinger, Marie-Claude Sincennes, Lorenzo Giordani, et al.. R-spondin1 Controls Muscle Cell Fusion through Dual Regulation of Antagonistic Wnt Signaling Pathways. Cell Reports, 2017, 18 (10), pp.2320-2330. ⟨10.1016/j.celrep.2017.02.036⟩. ⟨hal-02486025⟩
  • Maria Chatzifrangkeskou, Caroline Le Dour, Wei Wu, John Morrow, Leroy Joseph, et al.. ERK1/2 directly acts on CTGF/CCN2 expression to mediate myocardial fibrosis in cardiomyopathy caused by mutations in the lamin A/C gene. Human Molecular Genetics, 2016, 25 (11), pp.2220-2233. ⟨10.1093/hmg/ddw090⟩. ⟨hal-03862965⟩
  • Stéphanie Bauché, Seana O’regan, Yoshiteru Azuma, Fanny Laffargue, Grace Mcmacken, et al.. Impaired Presynaptic High-Affinity Choline Transporter Causes a Congenital Myasthenic Syndrome with Episodic Apnea. American Journal of Human Genetics, 2016, 99 (3), pp.753 - 761. ⟨10.1016/j.ajhg.2016.06.033⟩. ⟨hal-01680226⟩
  • Gaelle Bruneteau, Stéphanie Bauché, Jose-Luis Gonzalez de Aguilar, Guy Brochier, Nathalie Mandjee, et al.. Endplate denervation correlates with Nogo-A muscle expression in amyotrophic lateral sclerosis patients. Annals of Clinical and Translational Neurology, 2015, 2 (4), pp.362-372 ⟨10.1002/acn3.179⟩. ⟨hal-01118997⟩
  • Sophie Nicole, Amina Chaouch, Torberg Torbergsen, Stéphanie Bauché, Elodie de Bruyckere, et al.. Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. Brain - A Journal of Neurology , 2014, 137 (9), pp.2429-2443. ⟨10.1093/brain/awu160⟩. ⟨hal-03863959⟩
AFM Telethon : innover pour guérir
Agence nationale de la recherche
Congenital Muscular Dystrophy Research
Fundacion Andres Marcio

You cannot copy content of this page

Share This